Project A - John Baez's Reading List. The list

Here is what the reading list looks like:

History of Science

  • Emilio Segre, From Falling Bodies to Radio Waves: Classical Physicists and Their Discoveries, W. H. Freeman, New York, 1981.
  • Emilio Segre, From X-Rays to Quarks: Modern Physicists and Their Discoveries, W. H. Freeman, San Francisco, 1980.
  • Robert P. Crease and Charles C. Mann, The Second Creation: Makers of the Revolution in Twentieth-Century Physics, Rutgers University Press, New Brunswick, NJ, 1996.
  • Abraham Pais, Inward Bound: of Matter and Forces in the Physical World, Clarendon Press, New York, 1986.

Physics

  • M. S. Longair, Theoretical Concepts in Physics, Cambridge U. Press, Cambridge, 1986.
  • Richard Feynman, Robert B. Leighton and Matthew Sands, The Feynman Lectures on Physics, 3 volumes, Addison-Wesley, 1989.
  • Ian D. Lawrie, A Unified Grand Tour of Theoretical Physics, Adam Hilger, Bristol, 1990.
  • Herbert Goldstein, Charles Poole, and John Safko, Classical Mechanics, Addison Wesley, San Francisco, 2002.
  • F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill, New York, 1965.
  • John David Jackson, Classical Electrodynamics, Wiley, New York, 1975.
  • Edwin F. Taylor, John A. Wheeler, Spacetime Physics: Introduction to Special Relativity, W. H. Freeman Press, 1992.
  • Anthony Sudbery, Quantum Mechanics and the Particles of Nature: an Outline for Mathematicians, Cambridge University Press, Cambridge, 1986.
  • Claude Cohen-Tannoudji, Bernard Diu und Franck Laloë, Quantum Mechanics (2 volumes), Wiley-Interscience, 1992.
  • Kip S. Thorne, Black Holes and Time Warps: Einstein's Outrageous Legacy, W. W. Norton, New York, 1994.
  • Robert M. Wald, Space, Time, and Gravity: the Theory of the Big Bang and Black Holes, University of Chicago Press, Chicago, 1977.
  • Robert Geroch, General Relativity from A to B, University of Chicago Press, Chicago, 1978.
  • R. A. D'Inverno, Introducing Einstein's Relativity, Oxford University Press, Oxford, 1992.
  • J. B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Addison-Wesley, New York, 2002.
  • B. F. Schutz, A First Course in General Relativity, Cambridge University Press, Cambridge, 1985.
  • Charles W. Misner, Kip S. Thorne and John Archibald Wheeler, Gravitation, W. H. Freeman Press, San Francisco, 1973.
  • Robert M. Wald, General Relativity, University of Chicago Press, Chicago, 1984.
  • Edward R. Harrison, Cosmology, the Science of the Universe, Cambridge University Press, Cambridge, 1981.
  • M. Berry, Cosmology and Gravitation, Adam Hilger, Bristol, 1986.
  • John A. Peacock, Cosmological Physics, Cambridge University Press, Cambridge, 1999.
  • Richard Feynman, QED: the Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985.
  • Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, New York, 1995.
  • A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, 2003.
  • Warren Siegel, Fields.
  • Mark Srednicki, Quantum Field Theory
  • Sidney Coleman, Physics 253: Quantum Field Theory, 1975-1976.
  • James D. Bjorken and Sidney D. Drell, Relativistic Quantum Mechanics, New York, McGraw-Hill, 1964.
  • James D. Bjorken and Sidney D. Drell, Relativistic Quantum Fields, New York, McGraw-Hill, 1965.
  • Sidney Coleman, Aspects of Symmetry, Cambridge U. Press, 1989.
  • Rudolf Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, 1992.
  • Robin Ticciati, Quantum Field Theory for Mathematicians, Cambridge University Press, Cambridge, 1999.
  • Richard Borcherds and Alex Barnard, Lectures On Quantum Field Theory.
  • Kerson Huang, Quarks, Leptons & Gauge Fields, World Scientific, Singapore, 1982.
  • L. B. Okun, Leptons and Quarks, translated from Russian by V. I. Kisin, North-Holland, 1982.
  • T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood, 1981.
  • K. Grotz and H. V. Klapdor, The Weak Interaction in Nuclear, Particle, and Astrophysics, Hilger, Bristol, 1990.
  • Roger Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Knopf, New York, 2005.
  • Roland Omnes, Interpretation of Quantum Mechanics, Princeton U. Press, Princeton, 1994.
  • Josef M. Jauch, Foundations of Quantum Mechanics, Addison-Wesley, 1968.
  • George Mackey, The Mathematical Foundations of Quantum Mechanics, Dover, New York, 1963.
  • Carlo Rovelli, Quantum Gravity, Cambridge University Press, Cambridge, 2004.
  • Barton Zwiebach, A First Course in String Theory, Cambridge U. Press, Cambridge, 2004.
  • Katrin Becker, Melanie Becker and John H. Schwartz, String Theory and M-Theory: A Modern Introduction, Cambridge U. Press, Cambridge, 2007.
  • Michael B. Green, John H. Schwarz and Edward Witten, Superstring Theory (2 volumes), Cambridge U. Press, Cambridge, 1987.
  • Joseph Polchinski, String Theory (2 volumes), Cambridge U. Press, Cambridge, 1998.

Mathematics

  • F. William Lawvere and Stephen H. Schanuel, Conceptual Mathematics: a First Introduction to Categories, Cambridge University Press, 1997.
  • Saunders Mac Lane, Mathematics, Form and Function, Springer, New York, 1986.
  • Jean Dieudonne, A Panorama of Pure Mathematics, as seen by N. Bourbaki, translated by I.G. Macdonald, Academic Press, 1982.
  • Arthur T. Benjamin and Jennifer Quinn, Proofs that Really Count: The Art of Combinatorial Proof, The Mathematical Association of America, 2003.
  • Ronald L. Graham, Donald Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, Massachusetts, 1994.
  • Charles M. Grinstead and J. Laurie Snell, Introduction to Probability, American Mathematical Society, Providence, Rhode Island, 1997.
  • Silvanus P. Thompson, Calculus Made Easy, St. Martin's Press, 1914.
  • Gilbert Strang, Calculus, Wellesley-Cambridge Press, Cambridge, 1991.
  • James Nearing, Mathematical Tools for Physics
  • George Cain and James Herod, Multivariable Calculus.
  • Elizabeth S. Meckes and Mark Meckes, Linear Algebra, Cambridge U. Press, 2018.
  • Keith Matthews, Elementary Linear Algebra
  • Jim Hefferon, Linear Algebra
  • Robert A. Beezer, A First Course in Linear Algebra
  • Bob Terrell, Notes on Differential Equations
  • James Nearing, Mathematical Tools for Physics
  • Bob Terrell, Notes on Differential Equations
  • Herbert B. Enderton, Elements of Set Theory, Academic Press, New York, 1977.
  • Herbert B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 2000.
  • F. William Lawvere and Robert Rosebrugh, Sets for Mathematics, Cambridge U. Press, Cambridge, 2002.
  • George Cain, Complex Analysis
  • James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, McGraw-Hill, New York, 2003.
  • Serge Lang, Complex Analysis, Springer, Berlin, 1999.
  • Richard R. Goldberg, Methods of Real Analysis, Wiley, New York, 1976.
  • Halsey L. Royden, Real Analysis, Prentice Hall, New York, 1988.
  • James R. Munkres, Topology, James R. Munkres, Prentice Hall, New York, 1999.
  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1995.
  • Hermann Weyl, Symmetry, Princeton University Press, Princeton, New Jersey, 1983.
  • Ian Stewart, Galois Theory, 3rd edition, Chapman and Hall, New York, 2004.
  • George E. Andews, Number Theory, Dover, New York, 1994.
  • Joseph Silverman, Friendly Introduction to Number Theory, Pearson, 2017.
  • Martin H. Weissman, An Illustrated Theory of Numbers, American Mathematical Society, Providence, Rhode Island, 2017.
  • Paul Bamberg and Shlomo Sternberg, A Course of Mathematics for Students of Physics, Cambridge University, Cambridge, 1982.
  • Robert Geroch, Mathematical Physics, University of Chicago Press, Chicago, 1985.
  • Yvonne Choquet-Bruhat, Cecile DeWitt-Morette, and Margaret Dillard-Bleick, Analysis, Manifolds, and Physics (2 volumes), North-Holland, 1982 and 1989.
  • Jean Claude Dutailly, Mathematics for Theoretical Physics, 2012.
  • Shlomo Sternberg, Group Theory and Physics, Cambridge University Press, 1994.
  • Robert Hermann, Lie Groups for Physicists, Benjamin-Cummings, 1966.
  • George Mackey, Unitary Group Representations in Physics, Probability, and Number Theory, Addison-Wesley, Redwood City, California, 1989.
  • Brian Hall, Lie Groups, Lie Algebras, and Representations, Springer, Berlin, 2003.
  • William Fulton and Joe Harris, Representation Theory — a First Course, Springer, Berlin, 1991.
  • J. Frank Adams, Lectures on Lie Groups, University of Chicago Press, Chicago, 2004.
  • Daniel Bump, Lie Groups, Springer, Berlin, 2004.
  • Gregory L. Naber, Topology, Geometry and Gauge Fields: Foundations, Springer, Berlin, 1997.
  • Chris Isham, Modern Differential Geometry for Physicists, World Scientific Press, Singapore, 1999.
  • Harley Flanders, Differential Forms with Applications to the Physical Sciences, Dover, New York, 1989.
  • Charles Nash and Siddhartha Sen, Topology and Geometry for Physicists, Academic Press, 1983.
  • Mikio Nakahara, Geometry, Topology, and Physics, A. Hilger, New York, 1990.
  • Charles Nash, Differential Topology and Quantum Field Theory, Academic Press, 1991.
  • Victor Guillemin and Alan Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, 1974.
  • B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry — Methods and Applications, 3 volumes, Springer, Berlin, 1990.
  • Allen Hatcher, Algebraic Topology, Cambridge U. Press, Cambridge, 2002.
  • Peter May, A Concise Course in Algebraic Topology, U. of Chicago Press, Chicago, 1999.
  • Vladimir I. Arnol'd, Mathematical Methods of Classical Mechanics, translated by K. Vogtmann and A. Weinstein, 2nd edition, Springer, Berlin, 1989.
  • Michael Reed and Barry Simon, Methods of Modern Mathematical Physics (4 volumes), Academic Press, 1980.
  • Louis Kauffman, On Knots, Princeton U. Press, Princeton, 1987.
  • Louis Kauffman, Knots and Physics, World Scientific, Singapore, 1991.
  • Dale Rolfsen, Knots and Links, Publish or Perish, Berkeley, 1976.
  • Joseph Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
  • Charles Weibel, An Introduction to Homological Algebra, Cambridge U. Press, Cambridge, 1994.
  • Frank W. Anderson and Kent R. Fuller, Rings and Categories of Modules, Springer, 1992.
  • Herbert Wilf, Generatinfunctionology, Academic Press, 1994.
  • Richard P. Stanley, Enumerative Combinatorics, two volumes, Cambridge U. Press, 1997.
  • Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen and William Traves, An Invitation to Algebraic Geometry, Springer, Berlin, 2004.
  • Igor R. Shafarevich, Basic Algebraic Geometry, two volumes, third edition, Springer, 2013.
  • David Eisenbud and Joseph Harris, The Geometry of Schemes, Springer, 2006.
  • Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, 1994.
  • Kenneth Ireland and Keith Rosen, A Classical Introduction to Modern Number Theory, second edition, Springer, 1998.
  • Yu. I. Manin and Alexei A. Panchishkin, Introduction to Modern Number Theory: Fundamental Problems, Ideas and Theories, Springer, 2007.
  • Jürgen Neukirch, Algebraic Number Theory, Springer, 2010.
  • Eugenia Cheng, The Joy of Abstraction: an Exploration of Math, Category Theory, and Life, Cambridge University Press, 2022.
  • Brendan Fong and David Spivak, Seven Sketches in Compositionality: An Invitation to Applied Category Theory.
  • Tom Leinster, Basic Category Theory, Cambridge Studies in Advanced Mathematics, Vol. 143, Cambridge U. Press, 2014.
  • Emily Riehl, Category Theory in Context, Dover, New York, 2016.

Comments

Popular posts from this blog

J. Munkres. Topology (2013) Chapter 4: Countability and Separation Axioms. 32: Normal Spaces

J. Munkres. Topology (2013) Chapter 3: Connectedness and Compactness. 27: Compact Subspaces of the Real Line

J. Munkres. Topology (2013) Chapter 4: Countability and Separation Axioms. 31: The Separation Axioms